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At some point in time during a post-surgery period an anesthesiologists may intervene using a
medication to guicken a patient’s conscious-recovery time. An assessment of such intervention
methods has clinical importance. One performs an extension of the exponential model to address
this 1ssue. The model derived is the intervened exponential model (IED). Statistical properties of
this new model, expressions to estimate the model parameters, and a test statistic procedure to
verity conjectures about the intervention efforts are derived. Other concepts such as the hazard
function and its relevance to this model are introduced and examined. An illustrative example is

pursued to demonstrate this procedure.

1.0 Background and Motivation

Before a patient undergoes surgery it is
customary for the anesthesiologist to sedate
the patient who then loses either partial or
complete consciousness for a random
amount of time which i to exceed the
surgery time. One of the post surgery health
procedures is to cause the patient to recover
consciousness completely. For some
reasons, if this recovery does not occur on
its own before a medically suggested time,
the anesthesiologist intervenes by
medicating the patient with a dose of anti-
sedation drug to speed up the patient’s
conscious recovery. Of interest to the
anesthesiologist is an assessment of such
intervention efforts. This article extends the
exponential model to address this interest.

An analogous situation arises in
neurological studies. There has been an
interest in the medical community (Lamarre
et al, 1983 and Commenges and Seal, 1985)
involved in brain research studies about the
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total (behavioral) reaction time, X for a
patient who 1s subjected to some stimulus
drug. In this study the random variables Y
and Z denote respectively the time for
stimulus to reach the neuron cells and the
time for neurons to activate the necessary
movements. In an experiment like this,
although neuron activities are continuously
monitored, there 1s a latent variable which is
much of individualistic, and it is primarily
based on the patient’s physiology. An often
asked question is how much effect does
those patient’s physiologic characteristics or
metabolism have on the neuronal response
time?

2.0 The Intervened Exponential
Distribution

Let Y denote the random amount of time a
patient might be unconscious due to an
anesthetic drug. The surgery team would
prefer to have Y exceed an amount of time
©>0 which may either be known when it is
decided by the medical team or an unknown



when it 15 to be disease complication
dependent. At any rate we assume that Y
follows a truncated exponential modei,

-g—g_—{y—f]/9;1<y <o >0,

(1)

five, ry =

It is easy to recognize that t+0=E[Y], the
expected time for a patient to be in an
unconscious staie. At some point in time
during the post surgery period, if on its own
the patient’s conscious-recovery does not
occur, then the medical team might
intervene by medicating the patient with an
extra anti-sedation drug to speed up the
recovery. Suppose that on the average these
efforts result in E[Z}=p8 where Z and pf
denote respectively the random remaining
time to completely recover consciousness
and an "intervention function” of 6. In the
brain research study application, Z denotes a
random amount of time for neuronal
response to movement. We assume here that
the intervention function is a linear type
where p>0is an intervention effect. Thus p
is interpreted as being a percent reduction in
the conscious-recovery time. We also
assume that the random variable Z follows
an exponential model:

Z

;| -

glz10, pl = 5¢ PP 2>0,p 20,0 >0. (2)
Je)

Suppose that data on only X=Y+Z, the total
unconscious time of the patient is available
for statistical analysis. Assuming that Y and
Z are independent random variables, we
derive the probability density function [pdf}
of X as:

flxlp,8,t]= ff[ul@,ﬂg{x—ui&p]du .

That is
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(x—T) {x—T)
e PP _o 8
[xlp= 18 1]= 3a
flxdp Y {30)
and
j{r!p:l,ﬁ?,r]—(x;ﬂ L nile (3b

This new model is called the intervened
exponential distribution, [IED]. The sample
[observable] space for x is x>T>0, and the
parametric space of the model is in the
positive quadrant of a three dimensional
sphere such that {(p,0,7)l p>0, 8>0,t>0}. In
an event that the intervention efforts were
most effective {i.e. the patient
instantaneously recovers consciousness at
the time of the medical intervention], p will
be equal to zero, and in which case the
random times X and Y are the same and
hence the IED becomes the usual
exponential model in (1), When p=1 the
situation is static in the sense that the
intervention efforts have not altered the
patient’s conscious recovery rate, 8. For p>|
the situation is adversarial in the anesthetic
example.

Using the characteristic function we obtain
the mean, p, and variance o* of the IED in
{3),which are:

H, =T+(p+1)6

- ()

o =(0" +1&
The mode is:

po L
M, =1+ Inlpl and the median is

p—-1

pE
Xps =7— Inf1/2].

05 1 [1/2]



3.0 Parameter Estimation

Consider a random sample X, , X, ,...X
size n =2 from an IED population in (3).
Then, its log likelihood function is non-zero
if and only if the minimum of the
observations, Xm>’c. Hence the maximum
likelihood estimate, MLE, of the threshold
parameter, T, Is X{i)' To estimate the other
parameters, 8 and p, we consider the
transformation of the data, Ui=xi-x(§) for
i-1,2,....n. It is easy to see that the log
tikelihood function (u, ,u, ,...u, ) of the
transtormed data forps==11is

i .
0 T iy

Silnle & —¢ 9}

il

Eyll= ()

—ninlp—=ll-nng]

Ngie that E[UJ=(p-1)8 and Var[U}=
(p~+1)0. Differentiating separately with
respect to 0 and p in {5}, and equating them
to zero, we obtain the MLE of the model
parameters. After some dernivation we have
for the case that p>1 the two equations to be
solved simultaneousiy,

—

Zue 7 Jlee 7| = ®
= (p=1)
and
u (1) ] 2
Hooo T np@
2 i; 1 — & oY e 7)
= (p=1) <

For the case of p<! we have
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P -—uﬁ(l—-p)lr —t; {1~-p) —]“J 29
Tue 7 ol1-e FY = {9
= L J (1-p)

4.0 Testing Whether Effective
Intervention Took Place

A zero value for p is indicative of a
completely successful medical intervention,
whereas p=1 is to be interpreted as the status
quo in a conscious recovery rate of a patient.
Of interest to the medical team is whether
effective intervention took place. That is of
interest to test Hy: p=1 versus H,: p<l based
on a random sample X, , X, , ....X , of size
n from IED as in (3). Since the incidence
rate , €, is unknown in a real life situation,
the testing of p is not straight forward. For
this purpose we employed the Neyman’s
(1959) Cla] test procedure and also use it to
find a confidence interval estimate for the
effectiveness of the medical intervention.
Using this procedure and an approximate
version of the MLE for 8 which is

=" 10
= (10)

—_ H
where i = 31, /n we have an asympotic

i=l

test statistic based on the chi square

distribution. One has to be especially careful
in this case assuming asymptotic theory. The
reason 1s more pronounced in that we are
starting out with a positively skewed
distribution given the truncated exponential



assumption.

Thus given these assumptions the statistic
takes the form:

(p+ 13 (1, -2

Ap

(11)

wln+1)(p*+1)

which is chi square with one degree of
freedom under a hypothesized value of p.
So for a large sample we have for the nuil
hypothesis that p=1 the statistic:

i
: .2
Zi(u,- - U)
{

Xper == (12)

u(n—1

In the case of small sample sizes the statistic
should be computed using simulation.

We can also derive an asymptotic
100(1-0.)% confidence interval for p. Note
that

<;gi<;(ig]xiwa (13)

2

QM

Priy

3

in which Xf, is as specified in (11} and gi

2
is the 100,,th percentile from the chi square
distribution on 1 degree of freedom. Thus
arranging terms accordingly we obtain a
100(1-&)% confidence interval for p, the
intervention effect which is specified in the
statement,

Pril—1<p<U-lj=l-a (14)

where

Nl

n

=2
.Zl(“i ~u) l
i=

L= l-= ; (15)
wn-0Dx" 4
L i—?‘itl’f‘
I o -1
Z-(u, ~u)* \
= §M~ﬁ#EL~——”%:———
u(n-1)x,
Sk
(16}

5.0 Mustrative Example

Two small sets of data were used to
iltustrate this technique. Each had about 8
data points. These were the transformed
times, U,, i=1,...,n for n=8. Admittedly these
are small sample sizes. However, they
demonstrate the IED technique quite nicely.
The MLE’s of 6 and p were derived using
expressions {6) 1o (9). We then computed
the chi square values with 95% confidence
limits on the parameter, p, from expressions
(11)and (13).Table 1 gives the values of

;,Q,and ,8 . Table 2 gives the y* value with
the 35% confidence limits on p. In the first

study we have a very small p . indicating
the possibility of a successful intervention.
The chi square vaiue is quite small, but not
quite under the lower chi square limit.
However, the lower tail of the confidence
limit does include 0. In the second study the

- value of the MLE for p is quite close o one
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indicating the status quo and certainly one
would not reject the null that p=1.

6.0 Conclusions



One can see that from this newly derived
intervened exponential distribution that it
certainly has application to the intervention
we have proposed. The shortcoming of this
techaique is the derivations required to
isolate the intervention parameter, p. Also
some large sample approximations are
required to derive a number of the results.
However, the maximum likelihood
procedure works very nicely for this model
as does the chi square distribution. We have
not had the opportunity to apply this to
additional data sets, but expect to do so.
Also this technigue will lend itself very
nicely to a Bayesian treatment, especially in
the case of deriving the marginal posterior of
p for inference on that intervention
parameter. This work is currently ongoing.

Study A ~
3 5 5

1 1.849 0.005

2 0.503 0.999

Table 1. Estimated Parameter Values of
The Intervened Exponential

Model.
Study | Parameter | Lower | Upper
I p 0.000 0.289
2 o 0.593 1.404
Table 2. 95% Confidence Limits on p.
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